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Abstract 
 

This research aimed to develop detection model for aflatoxin-contaminated cocoa beans using YOLO (You Only Look Once) 

method based on fluorescence imaging. Aflatoxin level measurement and image acquisition were carried out on cocoa beans 

inoculated with Aspergillus flavus (6 mL/100 g) and incubated for 7 days. The quantification of aflatoxin levels was achieved 

through Liquid Mass Chromatography (LCMS), which served as the basis for categorizing the images into 3 groups, namely 

aflatoxin-free, contaminated below and contaminated above the threshold. The image acquisition was conducted in a mini studio 

equipped with UV light. Furthermore, image annotation was carried out using Roboflow, while YOLOv5 was employed as 

detection model for aflatoxin-contaminated cocoa beans. The performance of YOLO model, based on testing data, yielded the 

following metrics: precision (all): 0.91, recall (all): 0.93, mean average precision (all): 0.95 and mAP@[.5:.95] (all): 0.47. The 

average accuracy based on the confusion matrix from the testing data was 91%. These results showed that a combination of 

YOLOv5 model and fluorescence imaging presented a highly performing alternative for detecting various aflatoxin 

contamination levels in cocoa beans. © 2023 Friends Science Publishers 
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Introduction 
 

Aflatoxin is currently a global food safety concern, affecting 

sensory quality, causing trade loss (Wu 2015) and posing 

health risks such as cancer, mutations, immunosuppression, 

renal toxicity, and more (Rushing and Selim 2019). Among 

the various model responsible for aflatoxin production, 

Aspergillus flavus and Aspergillus parasiticus are the most 

common and toxic types (Wu et al. 2021). Aflatoxin is a 

secondary metabolite generated by A. flavus, affecting 

various agricultural commodities including peanuts (Osaili et 

al. 2023), corn (Cabrera-Meraz et al. 2021), rice 

(Dachoupakan Sirisomboon et al. 2013) and cocoa beans 

(Oliveira et al. 2009). Cocoa is an internationally valued 

commodity, with the export value and products reaching 

$50.09 in 2018-2019 (Voora et al. 2019). However, 

inadequate cocoa beans handling can facilitate the growth of 

A. flavus (Copetti et al. 2014), necessitating early detection 

before entering cocoa supply chain, as it remains stable under 

storage, processing, and production conditions. Cocoa beans 

are also subject to stringent trading requirements, including 

international authorities such as the European Commission 

limiting the intake of total aflatoxin to 20 ppb (European 

Commission 2014). 

Computer vision has been applied in detecting aflatoxin 

contamination in various agricultural products as an 

alternative to chemical methods such as Enzyme-Linked 

Immunosorbent Assay (ELISA) and Polymerase Chain 

Reaction (PCR) methods. Although these methods accurately 

quantify mycotoxin contamination, the drawbacks include 

high costs, time consumption, destructiveness and requiring 

expertise from laboratory personnel (Hassoun and Romdhane 

2015). Among the computer vision methods for mycotoxin 

detection are Color Imaging (Polisenska 2011), Near-infrared 

(NIR) Spectroscopy (Mallmann et al. 2020), Mid-infrared 

(MIR) Spectroscopy (Kaya-celiker et al. 2015), NIR 

Hyperspectral Imaging (Thiruppathi 2016) and X-Ray 

Imaging (Du et al. 2019). Each of these technologies has its 

advantages and disadvantages, with Color Imaging 

exhibiting high detection accuracy of up to 89% but 

having a limited electromagnetic range, preventing early 

mycotoxin contamination detection (Tallada et al. 2011). 
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Ultraviolet (UV)-Induced fluorescence imaging can be an 

alternative in aflatoxin detection by using the excitation-

emission properties of fluorescence light, where each organic 

material, including aflatoxin, possesses distinct fluorescence 

characteristics (Cozzini et al. 2008). Aflatoxin has excitation 

and emission wavelengths of 365 nm and 455 nm, 

respectively (Kamilaris and Prenafeta-Boldú 2018). Several 

investigations have been carried out on exploiting 

fluorescence properties, including Hyperspectral 

fluorescence imaging for detecting aflatoxin in corn (Hruska 

et al. 2017). However, the hyperspectral method requires 

relatively expensive equipment, indicating the need for 

simpler technology. Rotich et al. (2020) 365 nm LEDs were 

used in a color camera as the excitation light source to record 

the optical properties of fluorescence images created by UV 

light in the visible area. The target fluorophores were found 

to be able to emit in the visible area, allowing for the 

employment of simplified imaging techniques. 

The rapid development of deep learning algorithms in 

object detection has been remarkable, including YOLO 

which is categorized as a one-stage algorithm (Wang and Yan 

2021). This algorithm exhibits superior detection speed 

compared to two-stage algorithms such as R-CNN, Fast R-

CNN and Faster R-CNN (Sanchez et al. 2020). YOLOv5 

represents the fifth generation of YOLO algorithm, written in 

the Python programming language (Thuan 2021) and is a 

popular series due to its high accuracy and inference speed 

(Arifando et al. 2023). In this research, YOLOv5 was 

employed due to its advantages over other versions, including 

the newer YOLOv7. According to Olorunshola et al. (2023), 

YOLOv5 outperformed YOLOv7 in terms of speed and 

accuracy, which had been applied to agricultural product 

quality detection with high-performance models shown in 

research focusing on detecting fruits such as lychee (Wang et 

al. 2022) and tomatoes (Phan et al. 2023). 

Based on the explanations above, this research aimed to 

detect cocoa beans at different aflatoxin contamination 

levels, namely aflatoxin-free, contaminated below and above 

the threshold. This was achieved through the quantification 

by LC-MS, using the UV-induced fluorescence imaging 

system for image acquisition, and employing YOLO 

algorithm for aflatoxin-contaminated cocoa beans detection. 

This research was carried out to offer an alternative for 

aflatoxin contamination detection in cocoa beans, exhibiting 

higher accuracy compared to other methods. 

 

Materials and Methods 
 

Experimental details and treatments 

 

Experimental materials: The materials used in this research 

included the pure strain of A. flavus (Inacc F44) sourced from 

the Microbiology Laboratory collection at the Indonesian 

Institute of Sciences (LIPI) Cibinong. The forastero-type 

cocoa beans were obtained from the Indonesian Coffee and 

Cocoa Research Institute (Puslitkoka) with characteristics of 

fermented beans, 6% moisture content, free from mycotoxin 

contamination and intact. Chemical substances employed 

encompass potato dextrose broth (PDB), distilled water, 

NaCl, alcohol and methanol. 

Treatments: For fungus inoculum, the pure culture of A. 

flavus was cultivated in 10 mL liquid nutrient broth (NB) to 

obtain fungal inoculum, which was incubated for 3 days at 

room temperature. The resuspended culture was reinoculated 

in 100 mL of NB medium and incubated for 3 days at room 

temperature. The resulting culture was further inoculated in 

1000 mL of NB medium and incubated for 3 more days at 

room temperature to obtain the inoculum stock for cocoa 

beans inoculation. Subsequently, the fungal inoculum was 

inoculated to cocoa beans at 60 mL/kg, incubated at 30°C and 

90% RH in an incubator for 7 days after A. flavus inoculation. 

 

Measurement of aflatoxin levels 

 

The aflatoxin levels in the samples were determined using 

LCMS. The LC system included an Agilent 1100MSD SL 

mass spectrometry detector with an orthogonal ESI nozzle, a 

Shimadzu pump model (Shimadzu, Kyoto, Japan), a 

fluorescence detector (RF- 10AXL), an auto-injector (SIL-

10A), and a control system. The AF standard and pure 

samples were dissolved in 1 mL of mobile phase solution 

before being added to a 6 μL LCMS/ESI. Protons, [M+ H]+, 

with a residence time of 1,000 ms per ion were found in all 

of the tested AFs. For LC analysis, the test tube holding the 

pure sample or the aflatoxin working standard was added 

with 0.1 mL of TFA. The selected ions (m/z) targets were 

measured at 313, 315, 329 and 331, respectively, were AFB1 

and AFG2. The tube was vortexed, diluted with 0.9 mL of an 

acetonitrile-water solution (1:9) and allowed to sit in the dark 

for 15 min at room temperature. The resulting solution was 

then tested for reverse phase LC analysis using 20 μL. Using 

Electrospray Ionization (ESI) in Multiple Reaction 

Monitoring (MRM) modes, aflatoxin was discovered. The 

results of the LC/MS-MS data analysis gave the extracts 

compounds molecular weight and chromatogram in the form 

of peaks, allowing for the calculation of how many 

compounds were total in each sample. For each 

measurement, three times were performed. 

 

Image acquisition 

 

A Canon L300 camera was used to capture images of cocoa 

beans for up to seven days following the inoculation of A. 

flavus. 400 × 600-pixel JPG files were used to save the 

generated images. The image was captured in a studio that 

featured 365 nm UV LED lamp made by CCS Inc. in Japan. 

The UV lamp was positioned 350 mm away from the sample 

unit, emitting 6.9 Wm2 of radiation on average. Additionally, 

a UV bandpass filter was placed in front of the UV light 

source and the camera to block out the light that was 

reflected. It performs similarly to a UV cut filter but only lets 

0.3% of 365 nm to pass through. In the subunit of image 



 

Fluorescence Images and YOLO Based Aflatoxin Detection in Cocoa / Intl J Agric Biol Vol 30, No. 5, 2023 

 369 

acquisition, a high-resolution CMOS camera of 5 × 3078 

pixels was used, namely the EOS Kiss × 7 (Canon Inc., 

Japan) with ISO 200, F-5.6 and manual exposure of 1/3 sec 

for fluorescence image recording placed 450 mm from the 

sample location. The image acquisition unit measures 18.5 

cm × 18.5 cm × 29 cm and is connected to the light source 

through an optic fiber (Fig. 1). 

 

Detection modeling of aflatoxin-contaminated cocoa 

beans using YOLO 

 

A total of 100 images were collected and the dataset was 

split into 70 training, 20 validation and 10 testing images. 

Image annotation was carried out using the Roboflow 

application on the 100 images, total of 1360 annotated 

object, specifically cocoa beans, with details of 470, 430 and 

460 beans labeled as aflatoxin-free, below the threshold and 

above the threshold, respectively. Image pre-processing was 

performed through auto-orientation and resizing of images 

to 640 × 640. Image augmentation was applied to the 

training set to add data variation and enhance the 

performance of the network during training. Augmentation 

is carried out through horizontal flip and 90° clockwise 

rotate, a total of 210 augmented training images were 

obtained. Images dataset divided into 3 categories, including 

training (210 images / 88%), validation (20 images / 8%) and 

testing (10 images / 4%). 

The model design consisted of 8 stages, namely 1) 

Importing libraries, 2) Importing the dataset, 3) Cloning 

YOLOv5 repository, 4) Installing YOLOv5 libraries, 5) 

Training YOLOv5 model with cocoa beans image dataset. 

Upon completion, the "YOLOv5_training_best_weight" file 

containing the best network weights was generated. 6) 

Plotting metrics on Tensorboard, 7) Detecting aflatoxin-

contaminated cocoa beans using the trained model on the test 

dataset and 8) Plotting images of detected aflatoxin-

contaminated cocoa beans. YOLO algorithm settings for the 

experiment included batch size: 16, epochs: 200, initial 

learning rate: 0.01, deep learning library: PyTorch, weights: 

YOLOv5s.pt and optimization function: Adam, confidence 

threshold: 0.4 and IoU-threshold: 0.3 were set to test the 

output model. 

 

Performance of YOLOv5 model 

 

The performance of YOLOv5 model was tested by 

calculating the confusion matrix, recall, precision and F1 

score of the trained object detection networks (Yadav et al. 

2022). Furthermore, a performance test was conducted on the 

2 trained networks using 10 frames from the testing set. 

 

Results 

 

The quantification test showed that aflatoxin was not detected 

within the RL = 1 µg/kg limit in the control treatment. 

However, in the AF inoculation treatment from day 1 to day 7, 

AFB2 and AFG2 were not detected. An increase in AFB1 and 

AFG1 levels was also observed in the A. flavus inoculation 

treatment. Among aflatoxin types, AFG1 showed the highest 

increase, followed by AFB1 at 83.10 ppb and 9.77 ppb on day 

7, respectively (Fig. 2). 
 

Image analysis 
 

Image labeling according to the level of aflatoxin 
contamination was carried out, namely on days 1–2 
contaminated with aflatoxin below the threshold and days 3–
7 contaminated with aflatoxin above the threshold (Fig. 3). 
 

Detection modeling of aflatoxin-contaminated cocoa 

beans 
 

The acquired cocoa beans images were annotated using 

bounding boxes for 3 classes, namely aflatoxin-free, 

contaminated below the threshold and contaminated above 

the threshold, using the Roboflow application, as presented 

in (Fig. 4). The model was trained using the Google 

Colaboratory (Colab) cloud platform and a Notebook 

developed by Roboflow.ai based on YOLOv5. The model 

training with 200 epochs took approximately 5 min and a 

summary of YOLO model is given in Table 1. 

 
 

Fig. 1: Image acquisition unit 

 

 
 

Fig. 2: Changes in aflatoxin levels after inoculation of A. flavus on 

cocoa beans 
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Furthermore, the performance of YOLOv5 model on the 

testing data yielded precision (all): 0.91, recall (all): 0.93, 

mean average precision: 0.95, and mAP@[.5:.95]: 0.47. 

The improvement in the performance of YOLO model with 

each iteration as observed in (Fig. 5). showed different 

performance metrics for the training and validation sets. 

Other indicators such as precision-recall and F1-

confidence curves were shown in (Fig. 6a,b). 

The precision-recall curve summarized the tradeoff 

between the true positive rate and the predicted value for a 

prediction model using various probability thresholds. The 

area under the curve was called average precision (AP), 

where a higher AP value or approaching 1 indicated a more 

reliable model for detecting target object. A larger area under 

the curve signified high recall and precision, relating to low 

false positive and recall rates. Based on the P-R curve, cocoa 

class “above the threshold” covered more area compared to 

the “below” and “free” classes, with a value of 0.976. The F1 

score obtained for YOLO model was 0.91, indicating a high 

precision. The normalized confusion matrix of YOLO model 

on the testing data for detecting aflatoxin-contaminated cocoa 

beans was shown in (Fig. 7). 

Table 1: Training, validation, and testing performance of YOLOv5 model for aflatoxin contamination detection in cocoa beans 

 
 Training Validation Testing 

Class P R mAP mAP@ [.5, .95] P R mAP mAP@ [.5:.95] P R mAP mAP@ [.5:.95] 
All 0.99 0.99 0.99 0.51 0.89 0,93 0.95 0.52 0.91 0.93 0.95 0.47 

Free 0.99 0.99 0.99 0.46 0.86 0.92 0.94 0.47 0.88 0.89 0.91 0.44 

Above 0.99 0.99 0.99 0.51 0.87 0.94 0.93 0.52 0.92 0.99 0.96 0.41 
Below 0.99 1.00 0.99 0.56 0.95 0.93 0.93 0.57 0.91 0.95 0.98 0.57 

 

 
 

Fig. 3: Fluorescence images of cocoa beans as a result of A. flavus inoculation on days 1-7; a) control, (b1) day 1, (b2) day 2, (C1) day 3, 

(c2) day 4, (c3), day 5, (c4) day 6, (c5) day 7 

 

 
 

Fig. 4: An example of annotated fluorescence images with bounding boxes for detecting Afs-contaminated cocoa beans 
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In Fig. 7, the Y-axis (True) represented the ground truth 

class of annotated cocoa beans images, while the X-axis 

(Predicted) indicated the predicted classes from the trained 

model. The values in each cell indicated the proportion of 

each true class that had been predicted for contamination 

levels. For instance, 90% of cocoa beans had been accurately 

detected as contaminated with aflatoxin below the threshold, 

while 10% were predicted as contaminated above the 

threshold. Based on the confusion matrix (Fig. 7), the model 

was capable of predicting cocoa beans at various aflatoxin 

contamination levels. 

The output of YOLO model was represented by 

“best.pt” preserving the weights from the best epoch. The 

results included aflatoxin contamination detection equipped 

by bounding boxes with confidence scores, as shown in (Fig. 

8). Where all cocoa beans in each contamination level were 

successfully detected. In terms of confidence scores in Fig. 8, 

there were cocoa beans with scores higher than 0.9, while 

some had 0.3. 

Discussion 

 

Aflatoxin levels in cocoa beans in this research varied 

significantly in each observation. This aligned with Hruska et 

al. (2017), who examined aflatoxin measurements in maize 

kernels inoculated with A. flavus, and obtain a value 

exceeding the threshold by day 7. Based on the image 

acquisition results, cocoa beans images with blue UV light 

emission were observed on day 7. This emission occurred 

when fluorophores were excited by UV light at a specific 

wavelength, resulting in emission with a longer wavelength. 

AFB1 and AFB2 exhibited a blue fluorescence color, while 

AFG1 and AFG2 were green (Galaverna and Dall’Asta 2012). 

The performance of aflatoxin contamination detection 

model in cocoa beans, with precision (all): 0.91, recall (all): 

0.93, mean average precision (all): 0.95, and mAP@[.5:.95] 

(all): 0.47, showed that the model had performed well. Based 

on the object detection metric obtained, namely mAP, these 

results were better than the blueberry ripeness detection 

 
 

Fig. 5: Plots of box loss, objectness loss, classification loss, precision, recall, and mean average precision (mAP) through training epochs on 

training and validation sets 

 

 
 

Fig. 6: YOLO model performance curves (a) F1 confidence (b) precision-recall 
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performance conducted by MacEachern et al. (2023), which 

achieved an mAP of 0.88. The higher the mAP value, the 

better the performance of the object detection algorithm. The 

results obtained are also not much different from the results 

from Jubayer et al. (2021) obtained precision, recall and 

average precision (AP) of 98.10, 100 and 99.60%, 

respectively, for mold detection on food surfaces. 

The role of loss in the training process is crucial, as it 

reflects the relationship between true and predicted 

values. The smaller the loss value, the closer the predicted 

value is to a true value, resulting in better performance of 

the model. In this research, the three types of losses 

observed were noted namely box, objectness, and 

classification losses (Fig. 5). Box loss indicated how well the 

 
 

Fig. 7: Confusion matrix of YOLO model on testing data 

 

 
 

Fig. 8: Images of testing dataset evaluated with YOLO model on fluorescence imaging 
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algorithm precisely locate the center of object and the 

accuracy of the predicted bounding boxes to cover object. 

Minimum box loss showed the precision of bounding box 

positioning and enhanced estimation speed performance (Ye 

et al. 2023). Furthermore, objectness loss served as a measure 

of the probability that object existed in the proposed Region 

of Interest. A high objectness loss suggested that the image 

window might contain object (Hussain et al. 2021). 

Meanwhile, classification loss indicated how well the 

algorithm predicted the correct class of a given object 

(Kasper-Eulaers et al. 2021). Fig. 5 showed that the three 

losses for the training and validation sets exhibited decreasing 

trends and eventually stabilized. This suggested that the 

performance of the model rapidly improved in terms of 

precision, recall and mAP before reaching epoch 200. The 

validation data also showed rapid decreases up to around 

epoch 200, indicating the good object detection performance 

of the model. 

The image test from the testing dataset evaluated with 

YOLO model on fluorescence images obtained varying 

confidence scores ranging from 0.3 to 0.9. This diverse 

accuracy occurred due to the presence of numerous objects in 

an image. According to Ma (2023), accuracy declined when 

multiple object were present in an image, such as in images 

of oranges with and without peel, exhibiting higher 

confidence scores that contained only 1 object. 

 

Conclusion 

 

This research investigated the design of YOLO model based 

on fluorescence imaging with a wavelength of 365 nm for 

detecting aflatoxin-free cocoa beans, contaminated below the 

threshold, and above the threshold. The performance of the 

model on testing data yielded precision (all): 0.91, recall (all): 

0.93, mean average precision (all): 0.95, and mAP@[.5:.95] 

(all): 0.47. Moreover, the average accuracy based on the 

confusion matrix for the testing data was 91%. These results 

showed that the combination of YOLOv5 model and 

fluorescence imaging could serve as a highly-performing 

alternative for detecting aflatoxin contamination levels in 

cocoa beans. 

 

Acknowledgements 

 

The authors would like to acknowledge KEMENDIKBUD 

RISTEK, Lembaga Pengelola Dana Pendidikan (LPDP), and 

Beasiswa Pendidikan Indonesia (BPI) Indonesia for 

scholarship funding. 

 

Author Contributions 
 

MSS conducting research and writing manuscript; BDA 

conducting research and review manuscript; SS conducting 

research and review manuscript; DFA conducting research 

and provide hardware; YH conducting research and review 

manuscript. 

Conflicts of Interests 
 

All the authors declare that they have no competing interests. 

 

Data Availability 
 

Data supporting the findings of this study are available from 

the corresponding author upon reasonable request. 

 

Ethics Approval 
 

Not applicable to this paper. 

 

References 
 
Arifando R, S Eto, C Wada (2023). Improved YOLOv5-based lightweight 

object detection algorithm for people with visual impairment to detect 

buses. Appl Sci 13:5802 
Cabrera-Meraz J, L Maldonado, A Bianchini, R Espinal (2021). Incidence of 

aflatoxins and fumonisins in grain, masa and corn tortillas in four 

municipalities in the department of Lempira, Honduras. Heliyon 
7:e08506 

Copetti MV, BT Iamanaka, JI Pitt, MH Taniwaki (2014). Fungi and 

mycotoxins in cocoa: From farm to chocolate. Intl J Food Microbiol 
178:13‒20 

Cozzini P, G Ingletto, R Singh, C Dall’Asta (2008). Mycotoxin detection 

plays “cops and robbers”: Cyclodextrin chemosensors as specialized 
police. Intl J Mol Sci 9:2474‒2494 

Dachoupakan Sirisomboon C, R Putthang, P Sirisomboon (2013). 

Application of near infrared spectroscopy to detect aflatoxigenic 
fungal contamination in rice. Food Contr 33:207‒214 

Du Z, N Ali, B Ashraf (2019). X‐ray computed tomography for quality 

inspection of agricultural products : A review. Food Sci Nutr 7:3146‒

3160 
European Commission (2014). Commission implementing regulation (EU) 

No 884/2014 of 13 August 2014 imposing special conditions 

governing the import of certain feed and food from certain third 
countries due to contamination risk by aflatoxins and repealing 

regulation (EC) No 1152/2009. Official J Eur Union 2001:20‒30 

Galaverna G, C Dall’Asta (2012). 4.16 – Sampling techniques for the 
determination of mycotoxins in food matrices. Compr Sampl Sampl 

Prep 4:381‒403 

Hassoun A, K Romdhane (2015). Quality evaluation of fish and other seafood 
by traditional and nondestructive instrumental methods: Advantages 

and limitations. Crit Rev Food Sci Nutr 57:1976‒1998 

Hruska Z, H Yao, R Kincaid, RL Brown, D Bhatnagar, TE Cleveland (2017). 
Temporal effects on internal fluorescence emissions associated with 

aflatoxin contamination from corn kernel cross-sections inoculated 

with toxigenic and atoxigenic Aspergillus flavus. Front Microbiol 
8:1718 

Hussain A, B Barua, A Osman, R Abozariba, AT Asyhari (2021). Low 

latency and non-intrusive accurate object detection in forests. IEEE 

Symp Ser Comput Intellig (SSCI) 2021:1‒6 

Jubayer F, JA Soeb, AN Mojumder, MK Paul, P Barua, S Kayshar, SS Akter, 

M Rahman, A Islam (2021). Detection of mold on the food surface 
using YOLOv5. Curr Res Food Sci 4:724‒728 

Kamilaris A, FX Prenafeta-Boldú (2018). A review of the use of 

convolutional neural networks in agriculture. J Agric Sci 156:312‒322 
Kasper-Eulaers M, N Hahn, PE Kummervold, S Berger, T Sebulonsen, Ø 

Myrland (2021). Detecting heavy goods vehicles in rest areas in winter 

conditions using YOLOv5. Algorithms 14:114 
Kaya-celiker H, PK Mallikarjunan, A Kaaya (2015). Mid-infrared 

spectroscopy for discrimination and classification of Aspergillus spp. 

contamination in peanuts. Food Contr 52:103‒111 
Ma Y (2023). Automatic detection of oranges peel based on the YOLOv5 

Model. Highlights Sci Eng Technol 34:176‒182 



 

Sadimantara et al. / Intl J Agric Biol Vol 30, No. 5, 2023 

 374 

MacEachern CB, TJ Esau, AW Schumann, PJ Hennessy, QU Zaman (2023). 

Detection of fruit maturity stage and yield estimation in wild blueberry 

using deep learning convolutional neural networks. Smart Agric 

Technol 3:100099 
Mallmann CA, AO Mallmann, D Tyska (2020). Survey of mycotoxin in 

Brazilian corn by NIR spectroscopy. Glob J Nutr Food Sci 3:1‒7 

Oliveira CAF, NB Gonçalves, RE Rosim, AM Fernandes (2009). 
Determination of aflatoxins in peanut products in the northeast region 

of São Paulo, Brazil. Intl J Mol Sci 10:174‒183 

Olorunshola OE, ME Irhebhude, AE Evwiekpaefe (2023). A Comparative 
study of YOLOv5 and YOLOv7 object detection algorithms. J 

Comput Soc Inform 2:1‒12 

Osaili TM, WAMB Odeh, MAL Ayoubi, AASAA Ali, MSA Sallagi, RS 
Obaid, V Garimella, Bakhit, FSB Bakhit, R Holley, NEl Darra (2023). 

Occurrence of aflatoxins in nuts and peanut butter imported to UAE. 

Heliyon 9:e14530 
Phan QH, VT Nguyen, CH Lien, TP Duong, MTK Hou, NB Le (2023). 

Classification of tomato fruit using Yolov5 and convolutional neural 

network models. Plants 12:790 

Polisenska I (2011). Identification of Fusarium damaged wheat kernels using 

image analysis. Acta Univ Agric Silvicult Mendelianae Brunensis 

59:125‒130 
Rotich V, DF Al Riza, F Giametta, T Suzuki, Y Ogawa, N Kondo (2020). 

Thermal oxidation assessment of Italian extra virgin olive oil using an 

ultraviolet (UV) induced fluorescence imaging system. Spectrochim 
Acta - Part A: Mol Biomol Spectrosc 237:118373 

Rushing BR, MI Selim (2019). Aflatoxin B1: A review on metabolism, 
toxicity, occurrence in food, occupational exposure, and detoxification 

methods. Food Chem Toxicol 124:81‒100 

Sanchez SA, HJ Romero, AD Morales (2020). A review: Comparison of 
performance metrics of pretrained models for object detection using 

the TensorFlow framework. IOP Conf Ser: Mater Sci Eng 

844:012024 

Tallada JG, DT Wicklow, TC Pearson, PR Armstrong (2011). Detection of 

fungus-infected corn kernels using near-infrared reflectance 

spectroscopy and color imaging. Trans ASABE 54:1151‒1158 

Thiruppathi S (2016). Near-infrared (NIR ) hyperspectral imaging: Theory 
and applications to detect fungal infection and mycotoxin 

contamination in food products. J Grain Storage Res 1:90‒99 

Thuan D (2021). Evolution of Yolo Algorithm and Yolov5: The State-of-the-
art object detection algorithm. Bachelor’s Thesis. DIN16SP, Information 

Technology, Oulu University of Applied Sciences, Oulu, Finland 

Voora V, S Bermúdez, C Larrea (2019). Global market report: Cocoa. 
Available at: https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/ 

reference/referencespapers.aspx?referenceid=3019686 (Accessed: 22 

September 2023) 
Wang L, WQ Yan (2021). Tree Leaves Detection Based on Deep Learning 

BT. In: Geometry and Vision, pp:26–38. Nguyen V, WQ Yan, H Ho 

(Eds.). Springer International Publishing. New York, USA 
Wang L, Y Zhao, Z Xiong, S Wang, Y Li, Y Lan (2022). Fast and precise 

detection of litchi fruits for yield estimation based on the improved 

YOLOv5 model. Front Plant Sci 13:965425 

Wu F (2015). Global impacts of aflatoxin in maize: Trade and human health. 

World Mycotoxin J 8:137‒142 

Wu Y, JH Cheng, DW Sun (2021). Blocking and degradation of aflatoxins 
by cold plasma treatments: Applications and mechanisms. Trends 

Food Sci Technol 109:647‒661 

Yadav PK, JA Thomasson, SW Searcy, RG Hardin, U Braga-Neto, SC 
Popescu, DE Martin, R Rodriguez, K Meza, J Enciso, JS Diaz, T 

Wang (2022). Assessing the performance of YOLOv5 algorithm for 
detecting volunteer cotton plants in corn fields at three different 

growth stages. Artif Intellig Agric 6:292‒303 

Ye Z, W Wang, X Wang, F Yang, F Peng, K Yan, H Kou, A Yuan (2023). 
Traffic flow and vehicle speed monitoring with the object detection 

method from the roadside distributed acoustic sensing array. Front 

Earth Sci 10:992571 


